EE105 Microelectronic Devices and Circuits

Prof. Ming C. Wu

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)

Practical Op-Amps

- Linear Imperfections:
 - Finite open-loop gain ($A_0 < \infty$)
 - Finite input resistance ($R_i < \infty$)
 - Non-zero output resistance ($R_o > 0$)
 - Finite bandwidth / Gain-BW Trade-off
- Other (non-linear) imperfections:
 - Slew rate limitations
 - Finite swing
 - Offset voltage
 - Input bias and offset currents
 - Noise and distortion

Offset Voltage

Trimming of Offset Voltage

The output dc offset voltage of an op amp can be trimmed to zero by connecting a potentiometer to the two offset-nulling terminals. The wiper of the potentiometer is connected to the negative supply of the op amp.

Input Bias Currents and Offset Currents

- Some op-amps (bipolar) have input bias currents that need to flow for the opamp to function properly
- They are typically very small, ~ 100 nA, but may differ slightly (by 10 nA)

$$I_B = \frac{I_{B1} + I_{B2}}{2}$$

 $I_{OS} = |I_{B1} - I_{B2}|$

Effect of Input Bias Current in Amplifier Circuit

In the absence of input voltage, the output should be zero for ideal Op Amp. However, with non-zero I_B ,

$$V_O = I_{B1}R_2 \approx I_BR_2$$

Reducing the Effect of Input Bias Currents

Output Saturation

- The output voltage swing is limited by
 - 1. Saturation voltage (usually a volt or two lower than power supply voltage)
 - 2. Maximum output current (in case of small load resistance)
- Output waveform appears to be "clipped" when either condition happens

Slew Rate

Amplifier output is limited by "slew rate": maxium rate of change possible at output

 $SR = \frac{dv_o}{dt}\bigg|_{\rm m}$

SR is specified in datasheet in V/ μs .

Note

SR limit is different from bandwidth limit:

- Limited bandwidth is a linear phenomenon, it does not change the shape of input sinusoid
- SR limitation can cause nonlinear distortion to input sinusoidal signal

Output not able to follow input; Slope limited by SR

Comparison of Slew Rate and Bandwidth Limits

For step function input waveform, both SR and bandwidth limits cause the output to rise with a finite slope, but there is an important difference:

Full-Power Bandwidth

For ideal sinusoidal output

 $v_o = V_o \sin \omega t$

Rate of change cannot exceed SR: $\frac{dv_o}{dt} = V_o \omega \cdot \cos \omega t \le SR$

Full-power bandwidth: The frequency at which SR-limited distortion starts to occur for an output sinusoid with maximum rated output voltage, V_{omax},

$$\omega_{M}V_{omax} = SR$$
$$f_{M} = \frac{SR}{2\pi V_{omax}}$$

Op Amp Catalog (ti.com)

https://www.ti.com/amplifier-circuit/op-amps/products.html#

Hide filters Reset	1468 total parts												Email Downlo	oad to Excel
Number of Channels (#) $\geq 1 \leq 4$	Compare	Part Number Filter by part number Q	Number of Channels (#)	Total Supply Voltage (Min) (+5V=5, +/-5V=10)	Total Supply Voltage (Max) (+5V=5, +/-5V=10)	GBW (Typ) (MHz)	Slew Rate (Typ) (V/us)	Rail- to- Rail	Vos (Offset Voltage @ 25C) (Max) (mV)	lq per channel (Typ) (mA)	Rating	Operating Temperature Range (C)	Package Group	Approx. Price (US\$)
		ACF2101 - Low Noise, Dual Switched Integrator	2	14.5	36	2	3	No	2	15.5	Catalog	-40 to 125	SOIC	21.06 1ku
Total Supply Voltage (Min) (+5V=5, +/-5V=10)		AFE030 - Powerline Communications Analog Front-End	1	7	26	0.67	19	No		40	Catalog	-40 to 125	VQFN	1.75 1ku
≥ 0.9 ≤ 40		AFE031 - Powerline Communications Analog Front End	1	7	26	0.67	19	No		49	Catalog	-40 to 125	VQFN	2.00 1ku
		AFE032 - Power Line Communications Analog Front End	1	7	24	3.8	75	No		78	Catalog	-40 to 125	VQFN	3.50 1ku
Total Supply Voltage (Max)		ALM2402-Q1 - Dual Opamp with High Current Output	2	5	16	0.6	0.17	No	15	5	Automotive	-40 to 125	HTSSOP, SON	1.29 1ku
(+5V=5, +/-5V=10)		BUF602 - High Speed, Closed Loop Buffer	1	2.8	12.6	1000	8000	No	30		Catalog	-45 to 85	SOIC, SOT-23	0.93 1ku
≥ <u>3</u> ≤ 105		BUF634 - 250mA High-Speed Buffer	1	5	36	180	2000	No	100	1.5	Catalog	-40 to 125	DDPAK/TO-263, PDIP, SOIC, TO-220	3.50 1ku
GBW (Typ) (MHz)		DRV2700 - DRV2700 High Voltage Driver with Integrated Boost Converter	1	15	105	0.550	0.6		25	13	Catalog	-40 to 85	QFN	4.95 1ku
Slew Rate (Typ) (V/us) 🗸 🗸		ICL7652 - Precision Chopper- Stabilized Operational Amplifier LF147 - Wide Bandwidth Quad JFET Input Operational Amplifiers - Hi-Rel	1	7 5	36	1.9	2.8	In to V-, Out In to V+	0.005	1.5	Catalog Military	0 to 70 -55 to 125	PDIP	2.91 1ku
Rail-to-Rail V														
Vos (Offset Voltage @ 25C) V (Max) (mV)														
Iq per channel (Typ) (mA) 🗸 🗸														
Rating ~	Π	LF156 - JFET Input Operational	1	10	44	5	12	In	2	5	Military	-55 to 125	TO-99	A=1

